一、个人简介
余平,1982年2月出生,重庆市垫江县人,汉族,中共党员,副教授,硕士生导师,博士。2005年7月于565net必赢最新版首页官网“数学与应用数学”专业本科毕业,2005—2008年于重庆大学“概率论与数理统计”专业硕士研究生毕业,2013—2017年于北京工业大学“统计学”专业博士研究生毕业。全国工业统计学教学研究会理事,中国青年统计学家协会理事,复旦大学(合作导师:朱仲义教授)和香港中文大学(合作导师:宋心远教授)博士后,华东师范大学“中西部高等学校青年骨干教师国内访问学者”(访问导师:张日权教授)。研究方向:函数型数据分析、稳健统计、分位数回归,机器学习等。近6年在国内外学术刊物“中国科学.数学”中英文版,“Computational Statistics & Data Analysis”,“Metrika”、“Statistical Papers”、Computational Statistics等上发表。学术论文20余篇,16篇被SCI检索。
二、研究课题
1、全国统计科学研究优选项目函数型数据的机器学习研究 2022/7-2024/72022LY089(主持)
2、山西省自然科学基金面上项目基于期望回归的函数型数据统计分析研究2022/01-2025/01:20210302124262(主持)
3、山西省高等学校教学改革创新项目565net必赢最新版首页官网本科教学质量数据的统计分析研究—以565net必赢最新版首页官网为例2022/5-2025/5J20220450(主持)
4、国家自然科学基金面上项目,,精准降噪统计理论及在复杂数据中的实现,2021/01-2024/12,12071267,(第二参与人)
5、山西省自然科学基金面上项目,众数测量误差模型的估计与应用,2019/09-2022/09,201901D111279,(第二参与人)
6、国家自然科学基金面上项目,几类函数型数据模型的统计推断方法,2018/01—2021/1211771032(参与)
7、国家自然科学科学基金青年项目,,函数型数据的稳健统计推断理论及其应用,2015/01-2018/12, 11501018,(第二参与人)
8、国家自然科学基金面上项目, 流行病学中若干统计分析模型的推断, 2013/01-2016/12, 11271039(参与)
三、部分发表论文
(1)Yu Ping#,Zhang Zhongzhan*, Du Jiang, A test of linearity in partial function linear regression, Metrika, 2016, 79(8): 953-969. (SCI)
(2)Yu Ping#,Zhang Zhongzhan*, Du Jiang, Estimation in function partial linear composite quantile regression model, Chinese Journal of Applied Probability and Statistics, 2017, 2(33): 170-190.
(3)Yu Ping#,Du Jiang , Zhang Zhongzhan*, Varying-coefficient partially functional linear quantile regression models. Journal of the Korean Statistical Society. 2017,46 (3): 462-475.(SCI)
(4)余平#,杜江,张忠占*,部分函数型线性可加分位数回归模.系统科学与数学.2017, 37(5): 1335-1350.
(5)Yu Ping#,Zhu Zhongyi*, Zhang Zhongzhan,Robust exponential squared loss-based estimation in semi-functional linear regression model. Computational Statistics. 2019,39(4):503-525. (SCI)
(6)Yu Ping#,Du Jiang , Zhang Zhongzhan*.Single-index partially functional linear regression model. StatisticalPapers, 2020, 61(3): 1107-1123. (SCI)
(7)Yu Ping#,Li Ting, , Zhu Zhongyi*, Zhang Zhongzhan.Composite quantile estimation in partial functional linear regression model with dependent errors.Metrika, 2019,,82(6):633-656. (SCI)
(8)余平#, 杜江, 张忠占*,.基于众数回归的部分函数型线性可加模型的稳健估计. 中国科学.数学,2019,49(5):799-814
(9)翁羽玲#,余平, 张忠占*.带有相依误差的函数型线性模型的复合分位数估计.应用概率统计, 2019, 35(4): 360-372.
(10)Ding, Jianhua#*, Yu, Ping.Test shape constraints in semiparametric model with Bernstein polynomials. Communications in Statistics-Simulation and Computation, 2019,DOI:10.1080/03610918.2019.1699571(SCI)
(11)Yu Ping#*, Zhu Zhongyi , Shi Jianhong, Ai Xikai.Robust estimation for partial functional linear regression model based on modal regression. Journal of Systems Science and Complexity, 2020, 33: 527-544 (SCI)
(12)Xie tianfa#*, Cao rui yuan, Yu ping, Tianfa. Rank-based test for partial functional linear regression models. Journal of Systems Science and Complexity, 2020, 33(5): 1571-1584.
(13)Zhang Chunxiu, Yu Ping, Wang Xiaofeng. Statistical inference in EV linear model. Communications in Statistics-Theory and Methods, doi.org/10.1080/03610926.2021.1914096, 2021: 1-21.(SCI)
(14)Xie tianfa#*, Cao rui yuan, Yu ping, Rank method for partial functional linear regression models. Journal of the Korean Statistical Society,2021,50:354–3791-26. (SCI)
(15)Yu Ping#,Du Jiang*, Zhang Zhongzhan.Testing linearity in partial functional linear quantile regression model based on regression rank scores. Journal of the Korean Statistical Society.2021,50:214–232(SCI)
(16)Yu Ping#*,Li Ting, Zhu Zhongyi,Shi Jianhong.Composite quantile estimation in partial functional linear regression model based on polynomial spline.Acta Mathematica Sinica, English Series, 2021, 37(10): 1627-1644.(SCI)
(17)Shi J#, Zhang Y, Yu P,Song W*. SIMEX estimation in parametric modal regression with measurement error. Computational Statistics & Data Analysis, 2021,157: 107158.(SCI)
(18)Xiao J#, Yu P, Song X*, Zhang Z. Statistical inference in partial functional linear expectile regression model. Science China-Mathematics.https://doi.org/10.1007/s11425-020-1848-82022,(SCI)
(19)Xiao J#, Yu P, Zhang Z*. Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684.
四、讲授课程
概率论与数理统计(本科)、高等数理统计(硕士)、现代非参数统计(硕士)