欢迎来到565net必赢最新版首页官网!
教授
首页 > 师资队伍 > 教授 > 正文

曲海鹏

来源: 日期:2022-09-06 作者: 浏览次数:

4FA0

一、个人简介

曲海鹏,1973年12月出生,黑龙江省拜泉县人,汉族,教授,博士生导师,博士。565net必赢最新版首页官网565net必赢最新版首页官网应用数学所副所长,山西省数学会监事,1996年7月于北京大学数学科学学院基础数学专业本科毕业,1996—2001年于北京大学数学科学学院基础数学专业博士研究生毕业,2001—2003年于中国科学院数学与系统科学研究院博士后出站,合作出版研究生教材1部,在《Journalof Algebra》,《Science China Mathematics》,《Frontiers of Mathematics in China》等期刊发表学术论文40余篇。

二、研究课题

1.国家自然科学基金数学天元基金项目:“计算群论研讨班”,2011年,项目编号:11126019,已结题(主持).

2.国家自然科学基金面上项目:“有限p群的算术结构”,2017年,项目编号:11771258已结题(主持).

3.山西省自然科学基金项目:“有限p群中几个公开问题的研究”,2012年,项目编号:2012011001-3,已结题(主持).

三、出版著作

1.徐明曜,曲海鹏,《有限p群》,北京大学出版社,2010年9月出版.

四、发表论文

1.Haipeng,Qu;Yan, Wang andKai, Yuan,Frobenius groups which are the automorphism groups of orientably-regular maps, Ars Math. Contemp., 2020, 19(2),363--374.

2.Haipeng Qu;Mingyao Xu and Lijian An, Finite p-groups with a minimal non-abelian subgroup of index p (III), Sci. China, Math., 2015,58(4):763—780.

3.Haipeng Qu; Liping Zhao;Jin Gao and Lijian An,Finite p-groups with a minimal non-abeliansubgroup of index p(V),2014, J. Algebra Appl.,13(7):1450032(35 pages).

4.Haipeng Qu, A characterization of generalized Dedekind groups, Acta Math. Hungar,2014, 143(2): 269—273.

5.Haipeng Qu, Finite non-elementary abelian p-groups whose number of subgroups is maximal,Israel J. Math., 2013, 195(2),773—781.

6.Haipeng Qu;Sushan Yang;Mingyao Xu and Lijian An, Finite p-groups witha minimal non-abeliansubgroupof index p(I),J. Algebra,2012,358:178-188.

7.曲海鹏,郑丽峰, 内交换p-群的中心扩张 (IV), 数学学报, 2011, 54(5): 739—752.

8.曲海鹏,胡瑞芳, 内交换p-群的中心扩张 (III), 数学学报,2010,53(6):1051—1064.

9.曲海鹏,张小红, 内交换p-群的中心扩张 (II), 数学学报,2010,53(5): 933—944.

10.Haipeng Qu; Ying Sun and Qinhai Zhang, Finite p-groups in which the number of subgroups of possible order is less than or equal to p3, Chin.Ann.Math., 2010, 31(4): 497—506.

11.Haipeng Qu,An elementary proof of a theorem of Blacburn’s,Front. Math. China, 2010, 5(1): 117—122.

12.Haipeng Qu,Finite p-groups all ofwhose maximal normal abelian subgroups are soft, SciChina, Math.,2010, 53(11): 3037—3040.

13.Qiangwei,Song andHaipeng, Qu,Finitep-groups whose nonnormal subgroups are metacyclic, Sci.China Math.,2020, 63(7):1271--1284.

14. Lili Li andHaipeng Qu,The number of conjugacyclasses of nonnormal subgroups of finite p-groups, J. Algebra, 2016,466: 44—62.

15.Lifang WangandHaipeng Qu,Finite groups in which the normal closures of non-normalsubgroups have the same order, J. Algebra Appl.,2016,15(6):1650125(15 pages).

16.Lihua Zhang;Jiao Wang andHaipeng Qu,Finite p-groups whose non-central cyclic subgroups have cyclic quotient groups in their centralizers, Bull. Korea Math. Soc.,2015,52(2):367—376.

17.Lihua ZhangandHaipeng Qu, At-groups satisfying a chain condition, J. Algebra Appl., 2014, 13(4):1350137(5 pages).

18. Lijian, An;Haipeng, Quand Junqiang, Zhang,Finite 2-groups all of whose non-abelian subgroups are self-centralizing, J. Algebra Appl., 2021, 20(12):2150219(18 pages).

19. Kai Yuan; Yan Wang andHaipeng, Qu,Regular balanced Cayley maps on nonabelian metacyclic groups of odd order,Art Discrete Appl. Math., 2020,3(1):1.05(5 pages).

20.BoyanWei;HaipengQu andYanfeng Luo,A note on an “Anzahl” theorem of P. Hall, J.Algebra Appl.,2020,19(9):2050163(11 pages).

21.Dongdong,Hou;Yan,Wang andHaipengQu,Regular balanced Cayley maps ofp-groups with a cyclic maximal subgroup, Adv. Math.(China), 2018,47(3),383--387.

22. Kai Yuan; Yan Wang andHaipeng, Qu,Classification of regular balanced Cayley maps of minimal non-abelian metacyclic groups, Ars Math. Contemp., 2018, 14(2):433--443.

23.Boyan, Wei;HaipengQuandYanfengLuoFinitep-groups with few non-majork-maximal subgroups,Chinese Ann.Math. Ser. B, 2018, 39(1):59--68.

24.WenwenFan;CaihengLi andHaipengQu,A classification of orientably edge-transitive circular embeddings ofKpe,pf, Ann. Comb, 2018, 22(1): 135—146.

25.Pujin Li,Haipeng Quand Jiwen Zeng,Finite p-groups whose proper subgroups are of class≦n, J. Algebra Appl., 2017, 16(1):1750014(8pages)

26. LijianAn, Joseph Brennan,Haipeng Quand Elizabth Wilcox*, Chermak-Delgado lattice extension therorems, Comm. Algebra, 2015,43(5): 2201—2213

27.Lijian An,Lili Li,Haipeng Quand QinhaiZhang,Finite p-groups with a minimal non-abeliansubgroup of index p(II), Sci. China, Math., 2014, 57(4): 37—753

28.Lijian An,Lili Li,Haipeng Qu and QinhaiZhang,Finite p-groups with a minimal non-abeliansubgroup of index p(II), Sci. China Ser. A, 2014, 57(4): 737—753

29. Qinhai Zhang andHaipeng Qu,On Hua-Tuan's conjectureII, Sci China, Math., 2011, 54(1): 65—74

30.李立莉,曲海鹏, 陈贵云,内交换p-群的中心扩张(I),数学学报, 2010, 53:(4): 675—684.

31. Qinhai Zhang andHaipeng Qu,On Hua-Tuan's conjecture,Sci China, Math.,2009, 52(2): 389—393.

32.Qinhai Zhang,XiaoqiangGuo,Haipeng Quand Mingyao Xu, Finite groupswhich have many normal subgroups,J. Korea Math. Soc., 2009,:6(6): 1165—1178.

33.Lijian An,HaipengQu, Mingyao XuandChongsheng Yang,Quasi-NC groups,Comm. Algebra, 2008, 36(11): 4011-4019

34.Qinhai Zhang, Cuijuan Sun,Haipeng Quand Mingyao Xu,Finite 2-generator equilibrated p-groups, Sci China, Math., 2007, 50(6): 814---820.

五、讲授课程

《抽象代数》,《有限群论》,《点集拓扑》等.

六、获奖情况

2020年获565net必赢最新版首页官网“三育人”先进个人.